Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Discov Nano ; 19(1): 80, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700790

Nanoparticles including extracellular vesicles derived from mesenchymal stem cells are of increasing interest for research and clinical use in regenerative medicine. Extracellular vesicles (EVs), including also previously named exosomes, provide a promising cell-free tool for therapeutic applications, which is probably a safer approach to achieve sufficient healing. Storage of EVs may be necessary for clinical applications as well as for further experiments, as the preparation is sometimes laborious and larger quantities tend to be gained. For this purpose, nanoparticles were obtained from mesenchymal stem cells from adipose tissue (AdMSC) of horses and dogs. The EVs were then stored for 7 days under different conditions (- 20 °C, 4 °C, 37 °C) and with the addition of various additives (5 mM EDTA, 25-250 µM trehalose). Afterwards, the size and number of EVs was determined using the nano tracking analyzing method. With our investigations, we were able to show that storage of EVs for up to 7 days at 4 °C does not require the addition of supplements. For the other storage conditions, in particular freezing and storage at room temperature, the addition of EDTA was found to be suitable for preventing aggregation of the particles. Contrary to previous publications, trehalose seems not to be a suitable cryoprotectant for AdMSC-derived EVs. The data are useful for processing and storage of isolated EVs for further experiments or clinical approaches in veterinary medicine.

2.
Aging Dis ; 15(2): 911-926, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37548932

The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.


Aging , Lung , Animals , Mice , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Shc Signaling Adaptor Proteins/genetics , X-Ray Microtomography , Aging/genetics , Lung/diagnostic imaging , Oxidation-Reduction
3.
Animals (Basel) ; 13(20)2023 Oct 15.
Article En | MEDLINE | ID: mdl-37893949

The investigation of adipose tissue-derived mesenchymal stem cells (ASCs) has received considerable interest in regenerative medicine. A nontoxic adipogenic induction protocol valid for cells of different mammalian species has not been described. This study aims to establish an adipogenic differentiation protocol suitable for horses, sheep, dogs, murines, and human cells. An optimized rosiglitazone protocol, consisting of 5% fetal calf serum in Dulbecco's Modified Eagle's Medium, 10 µg/mL insulin, 0.55 µg/mL transferrin, 6.8 ng sodium selenite, 1 µM dexamethasone, and 1-5 µM of rosiglitazone, is compared to the 3-isobutyl-1-methylxantine (IBMX) protocol, where rosiglitazone was replaced with 0.5 mM IBMX and 0.2 mM indomethacin. Cell viability, cytotoxicity, a morphometric analysis of the lipid, and the expression of adipogenic markers for 14 days were assessed. The data revealed that using 5 µM of rosiglitazone promotes the adipogenic differentiation capacity in horse, sheep, and dog cells compared to IBMX induction. Meanwhile, marked reductions in the cell viability and cell number with the IBMX protocol were detected, and rosiglitazone increased the cell number and lipid droplet size, prevented apoptosis, and upregulated FABP-4 and Leptin expression in the cells of most of the species. Our data revealed that the rosiglitazone protocol improves the adipogenesis of ASCs, together with having less toxicity, and should be considered for cell reproducibility and clinical applications targeting obesity.

4.
Vet Comp Orthop Traumatol ; 35(6): 362-369, 2022 Nov.
Article En | MEDLINE | ID: mdl-35790198

OBJECTIVES: The aim of this study was to describe ultrasmall superparamagnetic iron oxides labelling of canine adipose-derived mesenchymal stem cells (AdMSCs) and the detection and semiquantitative evaluation of the labelled cells after implantation in artificial canine stifle defects using magnetic resonance imaging. METHODS: Magnetic resonance imaging examinations of 10 paired (n = 20) cadaveric stifle joints were evaluated after creation of chondral defects and embedding of ultrasmall superparamagnetic iron oxides labelled canine mesenchymal stem cells. To prove the feasibility of the labelling for in vivo usage, Prussian blue staining, cell vitality tests and intralesional administration of labelled cells were conducted. Magnetic resonance imaging of ex vivo defects filled with different cell concentrations was obtained to depict the cell content semiquantitatively via signal intensity measurements (region of interest). RESULTS: Prussian blue staining showed that the labelling was effective. According to the vitality tests, it had no significant short-term influence on cell viability and proliferation rate. For the evaluation of the defect T2* sequences were feasible and stifle defects were visible allowing measurements of the signal intensity in all cases. Increasing the cell concentration within the chondral defects resulted in an inversely proportional, significant reduction of signal intensity according to the region of interest. CLINICAL SIGNIFICANCE: Ultrasmall superparamagnetic iron oxides labelling was effective. The detection of the AdMSCs in a complex anatomical structure like the surface of the femoral condyle was possible and the T2* signal intensity of the implant region was significantly correlated with the concentration of the AdMSCs.


Mesenchymal Stem Cells , Stifle , Dogs , Animals , Stifle/diagnostic imaging , Stifle/surgery , Mesenchymal Stem Cells/metabolism , Magnetic Resonance Imaging/veterinary , Magnetic Resonance Imaging/methods , Iron/metabolism , Oxides/metabolism , Contrast Media
5.
Invest Ophthalmol Vis Sci ; 63(8): 3, 2022 07 08.
Article En | MEDLINE | ID: mdl-35816047

Purpose: The aim of this study was to explore the roles of crystallins in the context of aging in glaucoma and potential mechanisms of neuroprotection in an experimental animal model of glaucoma. Methods: Intraocular pressure (IOP) was significantly elevated for 8 weeks in animals at different ages (10 days, 12 weeks, and 44 weeks) by episcleral vein cauterization. Retinal ganglion cells (RGCs) were quantified by anti-Brn3a immunohistochemical staining (IHC). Proteomics using ESI-LTQ Orbitrap XL-MS was used to analyze the presence and abundance of crystallin isoforms the retinal samples, respectively. Neuroprotective property and localization of three selected crystallins CRYAB, CRYBB2, and CRYGB as most significantly changed in retina and retinal layers were determined by IHC. Their expressions and endocytic uptakes into Müller cells were analyzed by IHC and Western blotting. Müller cell secretion of neurotrophic factors into the supernatant following CRYAB, CRYBB2, and CRYGB supplementation in vitro was measured via microarray. Results: IOP elevation resulted in significant RGC loss in all age groups (P < 0.001). The loss increased with aging. Proteomics analysis revealed in parallel a significant decrease of crystallin abundance - especially CRYAB, CRYBB2, and CRYGB. Significant neuroprotective effects of CRYAB, CRYBB2, and CRYGB after addition to retinal cultures were demonstrated (P < 0.001). Endocytic uptake of CRYAB, CRYBB2, and CRYGB was seen in Müller cells with subsequent increased secretion of various neurotrophic factors into the supernatant, including nerve growth factor, clusterin, and matrix metallopeptidase 9. Conclusions: An age-dependent decrease in CRYAB, CRYBB2, and CRYGB abundance is found going along with increased RGC loss. Addition of CRYAB, CRYBB2, and CRYGB to culture protected RGCs in vitro. CRYAB, CRYBB2, and CRYGB were uptaken into Müller cells. Secretion of neurotrophic factors was increased as a potential mode of action.


Crystallins , Glaucoma , Animals , Cell Survival/physiology , Crystallins/metabolism , Disease Models, Animal , Ependymoglial Cells/metabolism , Glaucoma/metabolism , Intraocular Pressure , Nerve Growth Factors
6.
Stem Cell Res Ther ; 13(1): 56, 2022 02 05.
Article En | MEDLINE | ID: mdl-35123554

BACKGROUND: Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined. METHODS: Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA. RESULTS: The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes. CONCLUSIONS: Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.


Myoblasts , Osteogenesis , Animals , Cell Differentiation , Hypoxia/metabolism , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal , Myoblasts/metabolism , Osteogenesis/genetics
7.
Mol Neurobiol ; 59(1): 475-494, 2022 Jan.
Article En | MEDLINE | ID: mdl-34716556

Neuroinflammation within the superficial dorsal horn (SDH) of the spinal cord induces inflammatory pain with symptoms of hyperalgesia and allodynia. Glial activation and production of inflammatory mediators (e.g. cytokines) is associated with modulation of nociceptive signalling. In this context, medicinal signalling cells, e.g. obtained from adipose tissue (AdMSCs), gained attention due to their capacity to modulate the inflammatory response in several diseases, e.g. spinal cord injury. We applied the recently established mixed neuroglial primary cell culture of the rat SDH to investigate effects of AdMSCs on the inflammatory response of SDH cells. Following establishment of a co-cultivation system, we performed specific bioassays for tumour necrosis factor alpha (TNFα) and interleukin (IL)-6, RT-qPCR and immunocytochemistry to detect changes in cytokine production and glial activation upon inflammatory stimulation with lipopolysaccharide (LPS). LPS-induced expression and release of pro-inflammatory cytokines (TNFα, IL-6) by SDH cells was significantly attenuated in the presence of AdMSCs. Further evidence for anti-inflammatory capacities of AdMSCs derived from a blunted LPS-induced TNFα/IL-10 expression ratio and suppressed nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NFκB) in SDH microglial cells. Expression of IL-10, transforming growth factor beta (TGF-ß) and TNFα-stimulated gene-6 (TSG-6) was detected in AdMSCs, which are putative candidates for anti-inflammatory capacities of these cells. We present a novel co-cultivation system of AdMSCs with neuroglial primary cultures of the SDH to investigate immunomodulatory effects of AdMSCs at a cellular level.


Adipose Tissue/pathology , Cell Differentiation/physiology , Neuroinflammatory Diseases/pathology , Posterior Horn Cells/pathology , Adipose Tissue/metabolism , Animals , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Interleukin-6/metabolism , Posterior Horn Cells/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
8.
FASEB J ; 35(6): e21639, 2021 06.
Article En | MEDLINE | ID: mdl-34041782

During the emission phase of ejaculation, the sperm is driven from the cauda epididymidis, where it is stored, through the vas deferens by strong contractions. These contractions are thought of as being mainly induced by the sympathetic nervous system and the neurotransmitter noradrenaline. In the present study, we investigated the effect of oxytocin (suggested to exert effects during ejaculation as well) on defined segments of the rat and human epididymis using live imaging. Our results indicate that it is the very last part of the epididymis, segment 19 (S19) in rat and likewise segment 9 in human, which responds in a uniquely strong and rapid manner to oxytocin (similar to noradrenaline). Because of the complex nature of this contractile response, we developed an imaging analysis method, which allowed us to quantify multidirectional contractions and to display them using heat maps. The reaction of S19 to oxytocin was concentration-dependent and could be inhibited by pretreatment with oxytocin antagonists (atosiban and cligosiban), but not with an arginine vasopressin 1A antagonist (SR49059). In both rat and human tissue, pretreatment with the alpha-1 adrenoreceptor antagonist tamsulosin inhibited the response to noradrenaline, whereas the effect of oxytocin was unimpaired. Our data (from men and rodents) strongly suggest that the hormone oxytocin is involved in the ejaculatory process. Thus, oxytocin-based medications might be a promising non-adrenergic treatment option for ejaculatory disorders. Additionally, we propose that S19 could be an advantageous model (detecting very low concentrations of oxytocin) to test the bioactivity of new oxytocin agonists and oxytocin antagonists.


Ejaculation , Epididymis/physiology , Muscle Contraction , Oxytocin/pharmacology , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Vasopressin/chemistry , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Epididymis/drug effects , Humans , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar
9.
GMS J Med Educ ; 38(3): Doc53, 2021.
Article En | MEDLINE | ID: mdl-33824889

Goal: Presentation of the current range of courses regarding communication at the five German educational institutions for veterinary medicine. In addition to learning objectives and individual solutions, possible potential for future developments are presented. Methods: Interviews with communication educators at the five German education institutions and subsequent synopsis. Results: To date, there are no binding education guidelines regarding communication in veterinary medicine. Nevertheless, communication education has been introduced at all five education institutions, albeit depth and formats vary considerably. The learning objectives are largely consistent and based on the recommendations for day-one-skills made by the European Association of Establishments for Veterinary Education. Communication is not recognized as a fully-fledged subject in the curricula of any of the education institutions. All education institutions clearly fall short of teaching the recommended 150 lecture hours. Conclusion: To ensure communication skills in veterinary medicine graduates, binding education guidelines should be agreed upon. Communication education should be integrated into all veterinary curricula as a fully-fledged subject with longitudinally increasing depth.


Communication , Curriculum , Education, Veterinary , Education, Veterinary/methods , Germany , Humans , Learning
10.
J Anat ; 239(2): 336-350, 2021 08.
Article En | MEDLINE | ID: mdl-33641201

Muscle stem cells (MSCs) are a promising tool for cell-based therapy and tissue regeneration in veterinary medicine. Evaluation of MSCs from muscles of different origins improves our understanding of their regenerative potential. The present study compared the stemness, cell proliferation, migration potential, myogenic differentiation (MD), and multipotency of MSCs for four developmentally different muscles of ovine origin. MSCs were isolated from the hind limb (HL), diaphragm (DI), extraocular (EO), and masseter (MS) muscles. Cell proliferation, migration, and stemness were examined using sulforhodamine B, and colony formation assays. Evaluation of multipotency was examined using histological and morphometric analyses, alkaline phosphatase (ALP) activity, and the expression of myogenic, adipogenic, and osteogenic markers using RT-qPCR. Data were statistically analysed using analysis of variance. The results revealed that all experimental groups expressed stem cell markers paired box transcription factor Pax7, α7-integrin, CD90, and platelet-derived growth factor receptor alpha. DI and HL muscle cells displayed higher proliferation, migration, and colony formation capacities compared to the EO and MS muscle cells. HL and DI muscle cells showed increased MD, as indicated by myotube formation and relative expression of MyoD at day 7 and Myogenin at day 14. Although MS and EO muscle cells displayed impaired MD, these cells were more prone to adipogenic differentiation, as indicated by Oil Red O staining and upregulated fatty acid-binding protein 4 and peroxisome proliferator-activated receptor gamma expression. DI muscle cells demonstrated a higher osteogenic differentiation capability, as shown by the upregulation of osteopontin expression and an elevated ALP activity. Our data indicate that ovine HL and DI MSCs have a higher regenerative and multipotent potential than the EO and MS muscle cells. These results could be valuable for regional muscle biopsies and cell-based therapies.


Multipotent Stem Cells/physiology , Muscles/cytology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Male , Sheep
11.
Stem Cell Res Ther ; 12(1): 116, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579348

BACKGROUND: Combination of mesenchymal stem cells (MSCs) and biomaterials is a rapidly growing approach in regenerative medicine particularly for chronic degenerative disorders including osteoarthritis and osteoporosis. The present study examined the effect of biomaterial scaffolds on equine adipose-derived MSC morphology, viability, adherence, migration, and osteogenic differentiation. METHODS: MSCs were cultivated in conjunction with collagen CultiSpher-S Microcarrier (MC), nanocomposite xerogels B30 and combined B30 with strontium (B30Str) biomaterials in osteogenic differentiation medium either under static or mechanical fluid shear stress (FSS) culture conditions. The data were generated by histological means, live cell imaging, cell viability, adherence and migration assays, semi-quantification of alkaline phosphatase (ALP) activity, and quantification of the osteogenic markers runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) expression. RESULTS: The data revealed that combined mechanical FSS with MC but not B30 enhanced MSC viability and promoted their migration. Combined osteogenic medium with MC, B30, and B30Str increased ALP activity compared to cultivation in basal medium. Osteogenic induction with MC, B30, and B30Str resulted in diffused matrix mineralization. The combined osteogenic induction with biomaterials under mechanical FSS increased Runx2 protein expression either in comparison to those cells cultivated in BM or those cells induced under static culture. Runx2 and ALP expression was upregulated following combined osteogenic differentiation together with B30 and B30Str regardless of static or FSS culture. CONCLUSIONS: Taken together, the data revealed that FSS in conjunction with biomaterials promoted osteogenic differentiation of MSCs. This combination may be considered as a marked improvement for clinical applications to cure bone defects.


Mesenchymal Stem Cells , Osteogenesis , Alkaline Phosphatase/genetics , Animals , Biocompatible Materials , Cell Differentiation , Cells, Cultured , Horses , Stress, Mechanical
12.
Viruses ; 12(7)2020 07 12.
Article En | MEDLINE | ID: mdl-32664672

Several oncolytic viruses (OVs) including various human and canine adenoviruses, canine distemper virus, herpes-simplex virus, reovirus, and members of the poxvirus family, such as vaccinia virus and myxoma virus, have been successfully tested for canine cancer therapy in preclinical and clinical settings. The success of the cancer virotherapy is dependent on the ability of oncolytic viruses to overcome the attacks of the host immune system, to preferentially infect and lyse cancer cells, and to initiate tumor-specific immunity. To date, several different strategies have been developed to overcome the antiviral host defense barriers. In our study, we used canine adipose-derived mesenchymal stem cells (cAdMSCs) as a "Trojan horse" for the delivery of oncolytic vaccinia virus Copenhagen strain to achieve maximum oncolysis against canine soft tissue sarcoma (CSTS) tumors. A single systemic administration of vaccinia virus-loaded cAdMSCs was found to be safe and led to the significant reduction and substantial inhibition of tumor growth in a CSTS xenograft mouse model. This is the first example that vaccinia virus-loaded cAdMSCs could serve as a therapeutic agent against CSTS tumors.


Adipose Tissue/cytology , Mesenchymal Stem Cells/virology , Oncolytic Virotherapy/methods , Oncolytic Viruses/pathogenicity , Sarcoma/therapy , Sarcoma/veterinary , Animals , Dogs , Female , Mice , Mice, Nude , Vaccinia virus , Virus Replication , Xenograft Model Antitumor Assays
13.
Bone Rep ; 11: 100226, 2019 Dec.
Article En | MEDLINE | ID: mdl-31709277

Progressive bone loss is a predominant symptom of aging and osteoporosis. Therefore, the effects of sex steroids (i.e. testosterone and 17ß-estradiol) on the differentiation capacity of human bone-derived mesenchymal stromal cells (hMSCs), as progenitors of osteoblasts and adipocytes, are of particular interest. The objectives of the present study were, thus, to elucidate whether bone-derived hMSCs of postmenopausal women produce aromatase (CYP19A1) and, whether they modulate their differentiation behaviour in response to testosterone and 17ß-estradiol (E2), in relation to their steroid receptor expression. Supplementation of testosterone resulted in a considerable formation of E2 under osteogenic and adipogenic culture conditions, whereas E2 synthesis remained minimal in the cells cultured in basal medium. Concomitant with high aromatase expression and 17ß-estradiol formation of the cells cultured in osteogenic medium supplemented with testosterone, a distinct promotion of late-stage osteogenesis was found, as shown by significant matrix mineralization and a notable increase in osteogenic markers. These effects were abrogated by the aromatase inhibitor anastrozole. Under adipogenic conditions, testosterone reduced the occurrence of lipid droplets and led to a decrease in PPARγ and AR expression, independent of anastrozole. Regardless of the culture conditions, ERα was detectable whilst ERß was not. In conclusion, aromatase activity is limited to differentiated hMSCs and the resulting 17ß-estradiol enhances late osteogenic differentiation stages via ERα. Adipogenic differentiation, on the other hand, is reduced by both sex steroids: testosterone via AR and 17ß-estradiol.

14.
Stem Cell Res Ther ; 10(1): 309, 2019 10 22.
Article En | MEDLINE | ID: mdl-31640774

BACKGROUND: Adipose tissue-derived mesenchymal stem cells (ASCs) offer a promising cell source for therapeutic applications in musculoskeletal disorders. The appropriate selection of ASCs from various fat depots for cell-based therapy is challenging. The present study aims to compare stemness and multipotency of ASCs derived from retroperitoneal (RP), subcutaneous (SC), and lipoma (LP) fat to assess their usefulness for clinical application. METHODS: Equine ASCs from the three fat tissue sources were isolated and characterized. The cell viability, proliferation, and self-renewal were evaluated using MTT, sulforhodamine B, and colony forming unit (CFU) assays. Stem cell relative marker CD44, CD90, and CD105 and tumor marker CA9 and osteopontin (OPN) expression were quantified using RT-qPCR. Multipotency of ASCs for adipogenic, osteogenic, and chondrogenic differentiation was examined by quantifying Oil Red O and Alizarin Red S staining, alkaline phosphatase activity (ALP), and expression of differentiation relative markers. All data were statistically analyzed using ANOVA. RESULTS: RP fat-derived ASCs showed a higher cell proliferation rate compared to SC and LP derived cells. In contrast, ASCs from lipoma displayed a lower proliferation rate and impaired CFU capacities. The expression of CD44, CD90, and CD105 was upregulated in RP and SC derived cells but not in LP cells. RP fat-derived cells displayed a higher adipogenic potential compared to SC and LP cells. Although ASCs from all fat sources showed enhanced ALP activity following osteogenic differentiation, SC fat-derived cells revealed upregulated ALP and bone morphogenetic protein-2 expression together with a higher calcium deposition. We found an enhanced chondrogenic potency of RP and SC fat-derived cells as shown by Alcian blue staining and upregulation of aggrecan (Aggre), cartilage oligomeric matrix protein precursor (COMP), and collagen 2a1 (Col2a1) expression compared to LP. The expression of OPN and CA9 was exclusively upregulated in the ASCs of LP. CONCLUSIONS: The results provide evidence of variation in ASC performance not only between normal fat depots but also compared to LP cells which suggest a different molecular regulation controlling the cell fate. These data provided are useful when considering a source for cell replacement therapy in equine veterinary medicine.


Adipose Tissue/cytology , Lipoma/pathology , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Adipogenesis , Animals , Cell Proliferation , Cell Shape , Cell Survival , Chondrogenesis , Horses , Osteogenesis
15.
J Anat ; 235(4): 825-835, 2019 10.
Article En | MEDLINE | ID: mdl-31198988

Obesity is a worldwide nutritional disorder affecting body performance, including skeletal muscle. Inhibition of myostatin not only increases the muscle mass but also it reduces body fat accumulation. We examined the effect of high-fat diet on the phenotypic properties of forelimb muscles from myostatin null mice. Male wild-type and myostatin null mice were fed on either a normal diet or a high-fat diet (45% fat) for 10 weeks. Musculus triceps brachii Caput longum; M. triceps brachii Caput laterale; M. triceps brachii Caput mediale; M. extensor carpi ulnaris and M. flexor carpi ulnaris were processed for fiber type composition using immunohistochemistry and morphometric analysis. Although the muscle mass revealed no change under a high-fat diet, there were morphometric alterations in the absence of myostatin. We show that high-fat diet reduces the cross-sectional area of the fast (IIB and IIX) fibers in M. triceps brachii Caput longum and M. triceps brachii Caput laterale of both genotypes. In contrast, increases of fast fiber areas were observed in both M. extensor carpi ulnaris of wild-type and M. flexor carpi ulnaris of myostatin null mice. Meanwhile, a high-fat diet increased the area of the fast IIA fibers in wild-type mice; myostatin null mice display a muscle-dependent alteration in the area of the same fiber type. The combined high-fat diet and myostatin deletion shows no effect on the area of slow type I fibers. Although a high-fat diet causes a reduction in the area of the peripheral IIB fibers in both genotypes, only myostatin null mice show an increase in the area of the central IIB fibers. We provide evidence that a high-fat diet induces a muscle-dependent fast to slow myofiber shift in the absence of myostatin. The data suggest that the morphological alterations of muscle fibers under a combined high-fat diet and myostatin deletion reflect a functional adaptation of the muscle to utilize the high energy intake.


Diet, High-Fat/adverse effects , Muscle Fibers, Skeletal/pathology , Myostatin/deficiency , Animals , Forelimb , Hypertrophy/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/pathology
16.
Acta Histochem ; 121(3): 344-353, 2019 Apr.
Article En | MEDLINE | ID: mdl-30808518

Cell-based therapies have become a promising approach to promote tissue regeneration and the treatment of musculoskeletal disorders. Bone regeneration maintains bone homeostasis, mechanical stability and physical performance. Mechanical stimulation showed to induce stem cell differentiation into the osteogenic fate. However, the effect of various osteogenic protocols on the osteogenic commitment of equine adipose-derived stem cells is not fully elucidated. Here we examined the influence of fluid-based shear stress (FSS) via mechanical rocking to assess whether mechanical stimulation promotes osteogenic differentiation of equine adipose-derived stem cells (ASCs). ASCs were induced into osteogenic fate using osteogenic differentiation medium (ODM) protocol or additional supplementation of 5 mM CaCl2 and 7.5 mM CaCl2 protocol compared to cells cultivated in basal medium (BM) up to 21 day. The ASCs proliferation pattern was evaluated using the sulforhodamine B (SRB) protein assay. Osteogenic differentiation examined via semi-quantification of alizarin red staining (ARS) and alkaline phosphatase activity (ALP) as well as, via quantification of osteocalcin (OC), alkaline phosphatase (ALP), osteopontin (OP), and collagen type-1 (COL1) gene expression using RT-qPCR. We show that mechanical FSS increased the proliferation pattern of ASCs compared to the static conditions. Mechanical FSS together with 5 mM CaCl2 and 7.5 mM CaCl2 promoted osteogenic nodule formation and increased ARS intensity compared to the standard osteogenic protocols. We observed that combined mechanical FSS with ODM protocol increase ALP activity compared to static culture conditions. We report that ALP and OC osteogenic markers expression were upregulated under mechanical FSS culture condition particularly with the ODM protocol. Taken together, it can be assumed that mechanical stress using FSS promotes the efficiency of the osteogenic differentiation protocols of ASCs through independent mechanisms.


Adipose Tissue/cytology , Cell Differentiation/physiology , Cell Proliferation/physiology , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Alkaline Phosphatase/metabolism , Animals , Bone and Bones/metabolism , Cells, Cultured , Collagen Type I/metabolism , Horses , Osteocalcin/genetics
17.
BMC Vet Res ; 15(1): 42, 2019 Jan 28.
Article En | MEDLINE | ID: mdl-30691449

BACKGROUND: Mesenchymal stem cells are used for different therapeutic approaches, e.g. for osteoarthritis, lesions of the tendon as well as for bone defects. Current research on the mechanism of stem cells on the repair of damaged tissue suggest an important role of a cell-to-cell communication through secreted extracellular vesicles, mainly represented by exosomes. To enhance the scarce knowledge on the functional role of exosomes we compared as a first step different techniques to isolate and identify exosomes from the supernatant of equine adipose derived mesenchymal stem cells for further characterization and usage in functional assays. RESULTS: It was possible to obtain exosomes secreted from equine adipose derived mesenchymal stem cells with three common techniques: a stepwise ultracentrifugation at 100.000 g, an ultrafiltration with 3 kDa exclusion membranes and a charge-based precipitation method. The mean sizes and amounts of exosomes isolated with the different techniques were measured by the nanoparticle tracking analysis. The diameter ranged between 116.2 nm (ultracentrifugation), 453.1 nm (precipitation) and 178.7 nm (ultrafiltration), the counts of particles / ml ranged between 9.6 × 108 (ultracentrifugation), 2.02 × 109 (precipitation) and 52.5 × 109 (ultrafiltration). Relevant marker for exosomes, tetraspanins CD9, CD63 and CD81 were detectable by immunofluorescence staining of the investigated exosomes secreting mesenchymal stem cells. In addition, transmission electron microscopy and immunogold labeling with CD9 and CD90 was performed to display the morphological shape of exosomes and existence of marker relevant for exosomes (CD9) and mesenchymal stem cells (CD90). Western blot analysis of CD9 and CD90 of exosomes ensured the specificity of the rare available respectively cross reacting antibodies against equine antigens. CONCLUSION: Exosomes generated by equine mesenchymal stem cells can be obtained by ultrafiltration and ultracentrifugation in an equal quality for in vitro experiments. Especially for later therapeutic usage we recommend ultrafiltration due to a higher concentration without aggregation of extracellular vesicles in comparison to exosomes obtained by ultracentrifugation.


Cytological Techniques/methods , Exosomes , Horses , Mesenchymal Stem Cells/metabolism , Animals , Ultrafiltration
18.
PLoS One ; 14(1): e0207190, 2019.
Article En | MEDLINE | ID: mdl-30673694

PURPOSE: To analyze the potential neuro-protective and neuro-regenerative effects of Collapsin-response-mediator-protein-5 (CRMP-5) on retinal ganglion cells (RGCs) using in vitro and in vivo animal models of glaucoma. METHODS: Elevated intraocular pressure (IOP) was induced in adult female Sprague-Dawley (SD) rats by cauterization of three episcleral veins. Changes in CRMP-5 expression within the retinal proteome were analyzed via label-free mass spectrometry. In vitro, retinal explants were cultured under elevated pressure (60 mmHg) within a high-pressure incubation chamber with and without addition of different concentrations of CRMP-5 (4 µg/l, 200 µg/l and 400 µg/l). In addition, retinal explants were cultured under regenerative conditions with and without application of 200 µg/l CRMP-5 after performing an optic nerve crush (ONC). Thirdly, an antibody against Protein Kinase B (PKB) was added to examine the possible effects of CRMP-5. RGC count was performed. Number and length of the axons were determined and compared. To undermine a signal-transduction pathway via CRMP-5 and PKB microarray and immunohistochemistry were performed. RESULTS: CRMP-5 was downregulated threefold in animals showing chronically elevated IOP. The addition of CRMP-5 to retinal culture significantly increased RGC numbers under pressure in a dose-dependent manner and increased and elongated outgrowing axons in retinal explants significantly which could be blocked by PKB. Especially the number of neurites longer than 400 µm significantly increased after application of CRMP-5. CRMP-5 as well as PKB were detected higher in the experimental than in the control group. CONCLUSION: CRMP-5 seems to play an important role in an animal model of glaucoma. Addition of CRMP-5 exerts neuro-protective and neuro-regenerative effects in vitro. This effect could be mediated via activation of PKB affecting intra-cellular apoptosis pathways.


Glaucoma/pathology , Glaucoma/physiopathology , Models, Biological , Nerve Regeneration/drug effects , Neuroprotective Agents/pharmacology , Retinal Ganglion Cells/pathology , Animals , Female , Glaucoma/metabolism , Nerve Tissue Proteins/pharmacology , Neuronal Outgrowth/drug effects , Neuroprotection/drug effects , Proteome/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Retinal Ganglion Cells/drug effects
19.
Biomed Mater ; 14(2): 025004, 2019 01 07.
Article En | MEDLINE | ID: mdl-30530938

Given the important effects of strontium and silicon on cells of the bone as well as the increasing incidence of osteoporotic fractures, calcium phosphate-based bone cements containing silicon and strontium might represent a promising tool for bone replacement therapies of systemically altered bone. However, information about combined effects of strontium and silicon on osteoclastogenesis is still not available. Therefore, differentiation capacity of human peripheral blood mononuclear cells into osteoclast-like cells was investigated by culturing the cells in combination with a strontium- (pS100) and a strontium/silicon-modified calcium phosphate bone cement (pS100-G). Following culturing expression patterns of the cells in respect of their differentiation- and fusion-capacity were determined by real-time quantitative polymerase chain reaction, while cell morphology was visualized by phalloidin staining of the actin cytoskeleton. Additionally, strontium and silicon release from the bone cements into the cultivation media was determined using inductively coupled plasma mass spectrometry while surface topography of the cements was investigated by scanning electron microscopy. The results show that simultaneous incorporation of strontium and silicon into calcium phosphate cements changes properties of the cement such as solubility, and nearly abrogates the inhibitory effects of strontium on osteoclastogenesis.


Biocompatible Materials/chemistry , Bone Cements/chemistry , Calcium Phosphates/chemistry , Leukocytes, Mononuclear/cytology , Osteoclasts/cytology , Silicon/chemistry , Strontium/chemistry , Actins/chemistry , Bone and Bones/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Survival , Cells, Cultured , Culture Media , Cytoskeleton/metabolism , Humans , Microscopy, Electron, Scanning , Osteoclasts/metabolism , Osteogenesis/drug effects , Phalloidine/chemistry , Solubility
...